segunda-feira, 28 de abril de 2014





Matrizes
Introdução
   O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais aplicada em áreas como Economia, Engenharia, Matemática, Física, dentre outras. Vejamos um exemplo.
   A tabela a seguir representa as notas de três alunos em uma etapa:
 
 Química
Inglês
Literatura
Espanhol
A
8
7
9
8
B
6
6
7
6
C
4
8
5
9
   Se quisermos saber a nota do aluno B em Literatura, basta procurar o número que fica na segunda linha e na terceira coluna da tabela.
   Vamos agora considerar uma tabela de números  dispostos em linhas e colunas, como no exemplo acima, mas colocados entre parênteses ou colchetes:
Matrizes

Uma matriz de ordem m x n é qualquer conjunto de m . n elementos dispostos em m linhas e n colunas.
Representação

Cada elemento de uma matriz é localizado por dois índices: aij. O primeiro indica a linha, e o segundo, a coluna.
A matriz A pode ser representada abreviadamente por uma sentença matemática que indica a lei de formação para seus elementos.
A = (aij)mxn | lei de formação.
Ex.: (aij)2×3 | aij = i . j